FOURTH EDITION

An Introduction to Genetic Engineering Desmond S. T. Nicholl

ISTUDY

An Introduction to Genetic Engineering Fourth Edition

The fourth edition of this popular textbook retains its focus on the fundamental principles of gene manipulation, providing an accessible and broad-based introduction to the subject for beginning undergraduate students. It has been brought thoroughly up to date with new chapters on the story of DNA and genome editing, and new sections on bioethics, significant developments in sequencing technology and structural, functional and comparative genomics and proteomics, and the impact of transgenic plants. In addition to chapter summaries, learning objectives, concept maps, glossary and key word lists, the book now also features new concluding sections, further reading lists and websearch activities for each chapter to provide a comprehensive suite of learning resources to help students develop a flexible and critical approach to the study of genetic engineering.

Desmond S. T. Nicholl was Senior Lecturer in Biological Sciences, Head of Bioscience, Head of Quality Enhancement and Assistant Dean for Education at the University of the West of Scotland. As well as three previous editions of *An Introduction to Genetic Engineering*, he also authored *Cell and Molecular Biology* (Learning & Teaching Scotland, 2000).

'Genetic engineering represents a toolbox that all students within the basic and applied biology fields must get acquainted with. The fourth edition of *An Introduction to Genetic Engineering* is an excellent up-to-date version of a classic textbook. This ambitious book excellently balances the molecular biology knowledge required to grasp the comprehensive gene technology toolbox with a discussion of its impact on society.'

Per Amstrup Pedersen, University of Copenhagen

'As a biomedical engineering professor teaching an undergraduate Genetic Engineering course for close to 10 years, I use Dr Nicholl's *An Introduction to Genetic Engineering* as my go-to textbook. It is not one of those overly thick textbooks that overwhelm students. Its comprehensiveness captures readers' attention with succinct fundamental concepts that truly promote one's interest in exploring the wonder of many genetic engineering techniques and applications. To facilitate that further, the material provided at the end of each chapter encourages readers to expand their learning with relevant resources ... Many of my students become so interested that they pursue graduate degrees and have a career in this field. Dr Nicholl's textbook has a long-term influence on its readers.'

M. Ete Chan, State University of New York at Stony Brook

'Dr Nicholl's book covers all the basic material that one would expect from its title, but what particularly impressed me was how it isn't afraid to move into political and socio-economic arenas. In Chapter 16, for example, balanced arguments are presented for and against the development of transgenic organisms, and these don't always come out in favour of the science.'

Neil Crickmore, University of Sussex

An Introduction to Genetic Engineering Fourth Edition

Desmond S. T. Nicholl

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781009180597

DOI: 10.1017/9781009180610

First and second editions © Cambridge University Press 1994, 2002

Third and fourth editions © Desmond S. T. Nicholl 2008, 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 1994 Second edition 2002 Third edition 2008 Fourth edition 2023

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall, 2023

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-18059-7 Hardback ISBN 978-1-009-18060-3 Paperback

Additional resources for this publication at www.cambridge.org/nicholl4

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface			page xv
Part I	Ge	netic Engineering in Context	
Chapter	• 1	Introduction	2
Chapter	2	The Story of DNA	16
Chapter	3	Brave New World or Genetic Nightmare?	36
Part 2	Th	e Basis of Genetic Engineering	
Chapter	4	Introducing Molecular Biology	52
Chapter	5	The Tools of the Trade	78
Chapter	6	Working with Nucleic Acids	94
Part 3	Th	e Methodology of Gene Manipulation	
Chapter	· 7	Host Cells and Vectors	134
Chapter	8	Cloning Strategies	160
Chapter	9	The Polymerase Chain Reaction	188
Chapter	10	Selection, Screening and Analysis of Recombinants	210
Chapter	• 1 1	Bioinformatics	230
Chapter	12	Genome Editing	248
Part 4	Ge	netic Engineering in Action	
Chapter	13	Investigating Genes, Genomes and 'Otheromes'	264
Chapter	14	Genetic Engineering and Biotechnology	296
Chapter	15	Medical and Forensic Applications of Gene Manipulation	326

Chapter 16	Transgenic Plants and Animals	362
Chapter 17	The Other Sort of Cloning	390
Glossary Index		405 439

Detailed Contents

Preface

Part I Genetic Engineering in Context	
Chapter I Introduction	2
Chapter Summary	2
1.1 What Is Genetic Engineering?	3
1.2 Laying the Foundations	5
1.3 First Steps in DNA Cloning	6
1.4 Using the Web to Support Your Studies	8
1.5 Conclusion: The Breadth and Scope of Genetic Engineering	12
Further Reading	13
Websearch	14
Concept Map	15
Chapter 2 The Story of DNA	16
Chapter Summary	16
2.1 How Science Works	17
2.1.1 A Simple Model for the Scientific Method	23
2.1.2 A More Realistic Model for How Science Works	24
2.2 DNA: A Biographical Timeline	25
2.3 People, Places and Progress: Paradigm Shifts or Step-	
Changes?	28
2.4 Conclusion: The Scientific Landscape	32
Further Reading	33
Websearch	34
Concept Map	35
Chapter 3 Brave New World or Genetic Nightmare?	36
Chapter Summary	36
3.1 What Is Ethics?	37
3.1.1 The Ethical Framework	38
3.1.2 Is Science Ethically and Morally Neutral?	39

page <mark>xv</mark>

	5.1.2 is belence Ethically and Morally Reathan
	3.1.3 The Scope of Bioethics
3.2	Elements of the Ethics Debate
	3.2.1 The Role of the Scientist
	3.2.2 The Role of Society
	3.2.3 Current Issues in Bioethics
3.3	Conclusion: Has Frankenstein's Monster Escaped from
	Pandora's Box?
	Further Reading
	Websearch
	Concept Map

Part 2	The Basis	of Genetic	Engineering
--------	-----------	------------	-------------

Chapter 4 Introducing Molecular Biology	52
Chapter Summary	52
4.1 How Living Systems Are Organised	53
4.2 The Flow of Genetic Information	55
4.3 The Structure of DNA and RNA	57
4.4 Gene Organisation	60
4.4.1 The Anatomy of a Gene	61
4.4.2 Gene Structure in Prokaryotes	62
4.4.3 Gene Structure in Eukaryotes	63
4.5 Gene Expression	64
4.5.1 From Genes to Proteins	65
4.5.2 Transcription and Translation	66
4.5.3 Regulation of Gene Expression	67
4.6 Genes and Genomes	69
4.6.1 Genome Size and Complexity	70
4.6.2 Genome Organisation	71
4.6.3 The Transcriptome and Proteome	72
4.7 Conclusion: Structure and Function	73
Further Reading	74
Websearch	75
Concept Map	76
Chapter 5 The Tools of the Trade	78
Chapter Summary	78
5.1 Restriction Enzymes – Cutting DNA	79
5.1.1 Type II Restriction Endonucleases	80
5.1.2 Use of Restriction Endonucleases	81
5.1.3 Restriction Mapping	84
5.2 DNA Modifying Enzymes	84
5.2.1 Nucleases	85
5.2.2 Polymerases	86
5.2.3 Enzymes That Modify the Ends of DNA Molecules	87
5.3 DNA Ligase – Joining DNA Molecules	88
5.4 Conclusion: The Genetic Engineer's Toolkit	88
Further Reading	90
Websearch	91
Concept Map	92
Chapter 6 Working with Nucleic Acids	94
Chapter Summary	94
6.1 Evolution of the Laboratory	95
6.2 Isolation of DNA and RNA	90
6.3 Handling and Quantification of Nucleic Acids	100
Turning and Quantification of Tuccicic fictus	100

ix

6.4 Labelling Nucleic Acids	101
6.4.1 Types of Label – Radioactive or Not?	102
6.4.2 End Labelling	103
6.4.3 Nick Translation	104
6.4.4 Labelling by Primer Extension	104
6.5 Nucleic Acid Hybridisation	106
6.6 Gel Electrophoresis	108
6.7 DNA Sequencing: The First Generation	110
6.7.1 Principles of First-Generation DNA Sequencing	111
6.7.2 Sanger (Dideoxy or Enzymatic) Sequencing	112
6.7.3 Electrophoresis and Reading of Sequences	112
6.7.4 Automation and Scale-Up of DNA Sequencing	114
6.8 Next-Generation Sequencing Technologies	115
6.8.1 NGS – A Step-Change in DNA Sequencing	116
6.8.2 Principles of NGS	116
6.8.3 NGS Methodologies	119
6.9 Conclusion: Essential Techniques and Methods	127
Further Reading	129
Websearch	129
Concept Map	131

Part 3 The Methodology of Gene Manipulation

Chapter 7	Host Cells and Vectors	134
Chapter S	ummary	134
7.1 Types of H	lost Cell	135
7.1.1 Proka	ryotic Hosts	136
7.1.2 Eukar	yotic Hosts	136
7.2 Plasmid V	ectors for Use in E. coli	137
7.2.1 What	Are Plasmids?	137
7.2.2 Basic	Cloning Plasmids	138
7.2.3 Slight	ly More Exotic Plasmid Vectors	139
7.3 Bacteriop	nage Vectors for Use in E. coli	141
7.3.1 What	Are Bacteriophages?	141
7.3.2 Vecto	rs Based on Bacteriophage λ	145
7.3.3 Vecto	rs Based on Bacteriophage M13	147
7.4 Other Vec	tors	148
7.4.1 Hybri	d Plasmid/Phage Vectors	148
7.4.2 Vecto	rs for Use in Eukaryotic Cells	149
7.4.3 Artific	rial Chromosomes	150
7.5 Getting D	NA into Cells	152
7.5.1 Trans	formation and Transfection	152
7.5.2 Packa	ging Phage DNA In Vitro	153
7.5.3 Alterr	native DNA Delivery Methods	154
7.6 Conclusio	n: From In Vitro to In Vivo	156
Further R	eading	157
Websearc	h	157
Concept M	ſap	159

х

Chapter 8 Clo	ning Strategies	16
Chapter Summ	ary	16
8.1 Which Approac	ch Is Best?	16
8.1.1 Cloning in t	he Pre-genomic Era	16
8.1.2 Cloning (or 1	Not) in the Genomic and Post-genomic Eras	16
8.2 Generating DN	A Fragments for Cloning	16
8.2.1 Genomic DN	IA	16
8.2.2 Synthesis of	cDNA	16
8.2.3 PCR Fragme	nts	16
8.2.4 Synthetic Bi	ology: Making Genes from Scratch	16
8.3 Inserting DNA	fragments into Vectors	16
8.3.1 Ligation of H	Blunt/Cohesive-Ended Fragments	16
8.3.2 Homopolym	er Tailing	17
8.3.3 Linkers and	Adapters	17
8.3.4 Other Metho	ods for Joining DNA Fragments and Vectors	17
8.4 Putting It All Te	ogether	17
8.4.1 Cloning in a	λ Replacement Vector	17
8.4.2 Expression of	of Cloned cDNA Molecules	17
8.4.3 Cloning Larg	ge DNA Fragments in BAC and YAC Vectors	17
8.4.4 Gateway Clo	ning Technology	18
8.4.5 Golden Gate	Cloning and Assembly	18
8.4.6 The Gibson	Assembly Method	18
8.5 Conclusion: De	signing a Cloning Strategy	18
Further Reading	g	18
Websearch		18
Concept Map		18
Chapter 9 The	Polymerase Chain Reaction	18
Chapter Summ	ary	18
9.1 History of the H	PCR	18
9.2 The Methodolog	gy of the PCR	19
9.2.1 Essential Fea	atures of the PCR	19
9.2.2 Designing Pr	rimers for the PCR	19
9.2.3 DNA Polyme	erases for the PCR	19
9.3 More Exotic PC	R Techniques	19
9.3.1 PCR Using n	nRNA Templates	19
9.3.2 Nested PCR		19
9.3.3 Inverse PCR		19
9.3.4 Quantitative	and Digital PCR	19
9.3.5 RAPD and Se	everal Other Acronyms	20
9.4 Processing and	Analysing PCR Products	20
9.5 Conclusion: The	e Game-Changing Impact of the PCR	20
Further Reading	g	20
Websearch	-	20'
Concept Map		20

xi

Chapter 10	Selection, Screening and Analysis	
	of Recombinants	210
Chapter S	ummary	210
10.1 Genetic Se	election and Screening Methods	212
10.1.1 Use of	of Chromogenic Substrates	212
10.1.2 Inset	tional Inactivation	213
10.1.3 Com	plementation of Defined Mutations	214
10.1.4 Othe	r Genetic Selection Methods	215
10.2 Screening	Using Nucleic Acid Hybridisation	216
10.2.1 Nucl	eic Acid Probes	216
10.2.2 Scree	ening Clone Banks	218
10.3 Use of the	PCR in Screening Protocols	220
10.4 Immunolo	ogical Screening for Expressed Genes	221
10.5 Analysis o	f Cloned Genes	222
10.5.1 Restr	riction Mapping	222
10.5.2 Blott	ing Techniques	223
10.5.3 Sub-	cloning	225
10.5.4 DNA	Sequencing	225
10.6 Conclusion	n: Needles in Haystacks	226
Further R	eading	227
Websearc	h	227
Concept M	ſap	229
Chapter II	Bioinformatics	230
Chaptor S		220
Chapter S	uninary	230
11.1 What IS B	IOINIOFMALICS?	231
11.1.1 Com	puting Technology	232
11.1.2 Ine	Data Sata	234
11.2 Biological	Data Sets	234
11.2.1 Gene	eration and Organisation of Information	234
11.2.2 Prim 11.2.2 Novel	ary and Secondary Databases	235
11.2.3 Nucl	eic Acid Databases	236
11.2.4 Prote	n Dicinformatica Resources	237
11.2.5 Utile	informatics as a Tool	239
11.5 Using bio	ding the 'CICO' Effect Peal Experiments	241
11.3.2 Avoi	ding the Test Tube – Computational Experimentation	241
11.3.2 Avon	entation of Database Information	242
11 4 Conclusion	n: Bioscience and 'Big Data'	243
Further R	ending	244
Websearc	h	245
Concept M	lan	240
	ap	247
Chapter 12	Genome Editing	248
Chapter S	ummary	248
12.1 Gene Targ	jeting	250
12.2 Genome E	diting Using Engineered Nucleases	251
12.2.1 Zinc-	Finger Nucleases	

	12.2.2 TALENs	253
	12.2.3 The CRISPR-Cas9 System	253
	12.2.4 Prime Editing	256
12.3	Editing RNA as an Option	258
12.4	Where Can Genome Editing Take Us?	258
12.5	Conclusion: From Genome Read to Genome Write	259
	Further Reading	260
	Websearch	260
	Concept Map	261

Part 4	Genetic	Engineering	in Action
--------	---------	-------------	-----------

Chapter 13 Investigating Genes, Genomes and 'Otheromes'	264
Chapter Summary	264
13.1 Analysis of Gene Structure and Function	265
13.1.1 A Closer Look at Sequences	265
13.1.2 Finding Important Regions of Genes	266
13.1.3 Investigating Gene Expression	270
13.2 Understanding Genomes	272
13.2.1 Analysing and Mapping Genomes	273
13.2.2 An Audacious Idea	276
13.2.3 The Human Genome Project	277
13.2.4 Other Genome Projects	281
13.3 'Otheromes'	282
13.3.1 The Transcriptome	282
13.3.2 The Proteome	285
13.3.3 Metabolomes, Interactomes and More	286
13.4 Life in the Post-genomic Era	288
13.4.1 Structural Genomics and Proteomics	289
13.4.2 Functional Genomics	289
13.4.3 Comparative Genomics	289
13.5 Conclusion: The Central Role of the Genome	291
Further Reading	292
Websearch	292
Concept Map	294
Chapter 14 Genetic Engineering and Biotechnol	ogy 296
Chapter Summary	296
14.1 Making Proteins	297
14.1.1 Native and Fusion Proteins	299
14.1.2 Yeast Expression Systems	300
14.1.3 The Baculovirus Expression System	301
14.1.4 Mammalian Cell Lines	302
14.2 Protein Engineering	303
14.2.1 Rational Design	303
14.2.2 Directed Evolution	305

Chapt	er 15	Medical and Forensic Applications of Gene Manipulation	326
C	oncept N	Лар	325
W	ebsearc	n	324
Fi	urther R	eading	323
14.5 C	onciusio	n: industriai-scale Biology	322
14	1.4.4 Meet	ting the COVID-19 Challenge	320
14	4.4.3 Ther	apeutic Products for Use in Human Healthcare	316
14	4.4.2 The	BST Story	314
14	4.4.1 Prod	uction of Enzymes	313
rl	ONA Tec	hnology	312
14.4 E	xamples	of Biotechnological Applications of	
14	4.3.4 Dow	nstream Processing	312
14	4.3.3 Scale	e-Up Considerations	310
14	4.3.2 Prod	uction Systems	310
14	4.3.1 Thin	king Big – The Biotechnology Industry	308
14.3 Fi	rom Lab	oratory to Production Plant	308

	Chapter Summary	326
15.1	Diagnosis and Treatment of Medical Conditions	327
	15.1.1 Diagnosis of Infection	327
	15.1.2 Patterns of Inheritance	328
	15.1.3 Genetically Based Disease Conditions	330
	15.1.4 Investigating Disease Alleles Using Comparative Genomics	337
	15.1.5 Vaccine Development Using rDNA	338
	15.1.6 Therapeutic Antibodies	339
	15.1.7 Xenotransplantation	341
15.2	Treatment Using rDNA Technology – Gene Therapy	342
	15.2.1 Getting Transgenes into Patients	343
	15.2.2 Gene Therapy for Adenosine Deaminase Deficiency	344
	15.2.3 Gene Therapy for Cystic Fibrosis	346
	15.2.4 What Does the Future Hold for Gene Therapy?	346
15.3	RNA Interference	347
	15.3.1 What Is RNAi?	347
	15.3.2 Using RNAi as a Tool for Studying Gene Expression	348
	15.3.3 RNAi as a Potential Therapy	348
	15.3.4 Antisense Oligonucleotides	350
15.4	Medical Applications of Genome Editing	350
	15.4.1 Disease Targets for Genome Editing	350
	15.4.2 Sickle-Cell Success	351
	15.4.3 CRISPR-Cas9 – CAR T-Cell Therapies in Cancer Treatment	352
	15.4.4 The CCR5 Controversy	353
15.5	DNA Profiling	354
	15.5.1 The History of 'Genetic Fingerprinting'	354
	15.5.2 DNA Profiling and the Law	356
	15.5.3 Mysteries of the Past Revealed by Genetic Detectives	356
15.6	Conclusion: rDNA in Diagnosis, Analysis and Treatment	358
	Further Reading	359
	Websearch	360
	Concept Map	

	362
Chapter Summary	362
16.1 A Complex Landscape	363
16.2 Transgenic Plants	365
16.2.1 Why Transgenic Plants?	365
16.2.2 Making Transgenic Plants	365
16.2.3 Putting the Technology to Work	369
16.2.4 Have Transgenic Plants Delivered or Disappointed?	377
16.3 Transgenic Animals	378
16.3.1 Why Transgenic Animals?	378
16.3.2 Producing Transgenic Animals	379
16.3.3 Applications of Transgenic Animal Technology	380
16.4 Future Trends	383
16.4.1 Transgenesis or Genome Editing?	384
16.4.2 Gene Drives	384
16.5 Conclusion: Changing Genomes and Attitudes	385
Further Reading	386
Websearch	387
Concept Map	389
Chapter 17 The Other Sort of Cloning	390
Chapter 17 The Other Sort of Cloning Chapter Summary	390 390
Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments	390 390 391
Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning	390 390 391 393
Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency	390 390 391 393 393
Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots	390 390 391 393 393 394
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 	390 391 393 393 394 394
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 	390 390 391 393 393 394 396 398
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 	390 391 393 393 394 396 398 398
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 17.4.2 The Future of Organismal Cloning 	390 391 393 393 394 396 398 399 400
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 17.4.2 The Future of Organismal Cloning 17.5 Conclusion: From Genome to Organism 	390 391 393 393 394 396 398 399 400 401
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 17.4.2 The Future of Organismal Cloning 17.5 Conclusion: From Genome to Organism Further Reading 	390 391 393 393 394 396 398 399 400 401 401
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 17.4.2 The Future of Organismal Cloning 17.5 Conclusion: From Genome to Organism Further Reading Websearch 	390 391 393 393 394 396 398 399 400 401 402 403
 Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1 First Steps towards Cloning 17.1.1 First Steps towards Cloning 17.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 17.4.2 The Future of Organismal Cloning 17.5 Conclusion: From Genome to Organism Further Reading Websearch Concept Map 	390 391 393 393 394 396 398 399 400 401 402 403 404
Chapter 17 The Other Sort of Cloning Chapter Summary 17.1 Early Thoughts and Experiments 17.1.1 First Steps towards Cloning 17.1.2 Nuclear Totipotency 17.2 Frogs and Toads and Carrots 17.3 A Famous Sheep – The Breakthrough Achieved 17.4 Beyond Dolly 17.4.1 Potential Unfulfilled? 17.4.2 The Future of Organismal Cloning 17.5 Conclusion: From Genome to Organism Further Reading Websearch Concept Map Glossary	390 391 393 393 394 396 398 399 400 401 402 403 404

Preface

Advances in genetics continue to be made at an ever increasing rate, which presents something of a dilemma when writing an introductory text on the subject. In the years since the third edition was published, many new applications of gene manipulation technology have been developed; genome sequencing has become available at bench-top scale and cost, and gene editing can be achieved using very modest laboratory infrastructure. Personal genome profiling is available from a range of companies, and genetic technology has played a major role in managing many aspects of the COVID-19 pandemic, from diagnostic testing to rapid development of safe and effective vaccines.

Information technology resources, coupled with the internet and World Wide Web, have been critical parts of all these developments, providing tools for the analysis of DNA sequences and instant sharing of data across the globe. At the same time, a level of mistrust has developed among some sections of society, largely driven by misinformation on social media channels, which has illustrated the power of the internet in a less positive way. It is against this background that some themes began to emerge for the fourth edition, reflecting the aim of encouraging students to use the excellent resources on the web, whilst retaining a level of critical assessment of the information. Aspects around the ethics of using genetic technology are perhaps now even more important than before, so these are discussed early in the text to enable the applications to be placed within an appreciation of the ethical framework.

Whilst aiming for a slight broadening in scope, I remain convinced that a basic technical introduction to the subject should be the major focus of the text. Thus, some of the original methods used in gene manipulation have been kept as examples of how the technology developed, even though some of these have become little used or even obsolete. From the educational point of view, this should help the reader cope with more advanced information about the subject, as a sound grasp of the basic principles is an important part of any introduction to genetic engineering. I have been gratified by the many positive comments about the third edition of the text, and I hope that this new edition continues to serve a useful purpose as part of the introductory literature on this fascinating subject.

This book is organised as four parts. *Part 1* (*Genetic Engineering in Context*; Chapters 1–3) sets the scene and brings the discussion of the ethical issues around DNA technology to the start of the book. *Part 2* (*The Basis of Genetic Engineering*; Chapters 4–6) provides an introduction to molecular biology and outlines the tools available to the genetic engineer, and *Part 3* (*The Methodology of Gene Manipulation*; Chapters 7–12) extends this theme further by examining how these tools enable

sophisticated experiments and procedures to be carried out. Finally, in *Part 4 (Genetic Engineering in Action; Chapters 13–17)*, we look at the impact of DNA technology across a range of key areas.

In the fourth edition, I have expanded the range of features that should be useful as study aids where the text is used to support a particular academic course. In the book, there are text boxes sprinkled throughout the chapters. These highlight key points on the way through the text, and can be used as a means of summarising the content. At the start of each chapter, the aims of the chapter are presented, along with a chapter summary in the form of learning objectives. These have been written quite generally, so that an instructor can modify them to suit the level of detail required. A list of the key words in each chapter is also provided for reference. These are shown as bold in the text; terms in blue can also be found in the Glossary. A new addition to the end of each chapter is a websearch page that provides some structured web-based search exercises that help to set the chapter in context and act as a start point for further study using the resources available online. As in previous editions, a concept map has been generated for each chapter, showing how the main topics are linked. The concept maps provided here are essentially summaries of the chapters, and may be examined either before or after reading the chapter.

As this remains an introductory text, no in-text reference has been made to the primary (research) literature, but some suggestions for *further reading* are given at the end of each chapter. Most of these are available in open-access format or may be available through an institution's library subscription service. A *glossary* of terms used has also been provided.

A new development for the fourth edition is a set of *online resources* at www.cambridge.org/nicholl4. This provides access to a range of materials from the book (and additional information) that I hope will be useful in building a learning system to suit your preferred learning style. The resources have been provided in electronic format as a *study guide* to enable collation into a set of student-generated notes.

My thanks go to the anonymous (but appreciated) reviewers of the proposal and the early versions of the manuscript. Their comments and suggestions have made the book better; any errors of fact or interpretation of course remain my own responsibility. Special thanks to Megan Keirnan, Susan Francis, Helen Shannon and Rachel Norridge at Cambridge University Press, and to Joyce Cheung, for their cheerful advice, support, encouragement and patience, which helped bring the project to its conclusion.

My final and biggest thank you goes as ever to my wife Linda and to Charlotte, Thomas and Anna, who have grown up along with the various editions of 'IGE'. I dedicate this new edition to them.

Part I

Genetic Engineering in Context

Chapter I	Introduction	2
Chapter 2	The Story of DNA	16
Chapter 3	Brave New World or Genetic Nightmare?	36

Chapter I Summary

Learning Objectives

When you have completed this chapter, you will be able to:

- Define genetic engineering as it will be described in this book
- Outline the basic features of genetic engineering
- Describe the emergence of gene manipulation technology
- Explain the steps required to clone a gene
- Appreciate elements of the ethical debate surrounding genetic engineering
- Identify a range of internet-based resources related to DNA technology

Key Words

Genetic engineering, bioinformatics, gene manipulation, gene cloning, recombinant DNA (rDNA) technology, genetic modification, new genetics, DNA technology, molecular agriculture, genethics, Gregor Mendel, James Watson, Francis Crick, DNA ligase, type II restriction enzyme, plasmid, extrachromosomal element, replicon, clone, genetically modified organism (GMO), internet, World Wide Web, Tim Berners-Lee, uniform resource locator (URL), domain (*re.* URL), search engine, valid, reliable, peer review, Encyclopedia Britannica, Wikipedia, social media, misinformation, disinformation, suggested search term (SST), digital object identifier (DOI).

Chapter I

Introduction

1.1 What Is Genetic Engineering?

Making progress in any scientific discipline depends on continually developing techniques and methods to extend the range and sophistication of experiments that may be performed. Within the biosciences, this has been demonstrated in a spectacular way by the emergence and development of genetic engineering. In 2022, we marked the fiftieth anniversary of the creation of the first recombinant DNA molecules, an event that is often used to note the start of the recombinant DNA era of genetics. The five decades since 1972 have seen astonishing progress in the breadth and scope of the technology, and it is now routine practice to identify a specific DNA fragment from the genome of an organism, determine its base sequence and assess its function. The sequence might then be altered and replaced into the organism it came from, or a different organism, to achieve a particular goal. We have seen the expansion of the technology into the domain of 'big science' in the era of the Human Genome Project, and its return to the small-scale laboratory as new developments have appeared. Whole genomes can now be sequenced using a benchtop machine, and genome editing enables researchers to alter the genome of an organism with a high level of precision. All of this is now underpinned by the astonishing developments in bioinformatics, with sophisticated computational tools available to analyse almost unimaginable amounts of data that are generated on a daily basis.

The term genetic engineering is often thought to be rather emotive or even trivial, yet it is probably the label that most people would recognise. However, there are several other terms that can be used to describe the technology, including **gene manipulation**, **gene cloning**, **recombinant DNA (rDNA) technology** and **genetic modification**. You may also come across the term the '**new genetics**', although we are at a point where this is perhaps less useful than was the case previously. A more useful generic term that covers a wide range of techniques and applications is simply **DNA technology**. There are also legal definitions used in administering regulatory mechanisms in countries where genetic engineering is practised.

Several terms may be used to describe the technologies involved in manipulating genes.

The genetic material provides a rich resource in the form of information encoded by the sequence of bases in the DNA.

Although there are many diverse and complex techniques involved, the basic principles of genetic manipulation are reasonably simple. The premise on which the technology is based is that genetic information, encoded by DNA and arranged in the form of genes, is a *resource* that can be manipulated in various ways to achieve certain goals in both pure and applied science, medicine, biotechnology and agriculture. There are many areas in which genetic manipulation has made a significant impact, including:

- Basic research on gene structure and function
- Production of useful proteins by novel methods
- · Generation of transgenic plants and animals
- Medical diagnosis and treatment
- Forensic analysis of crime scene samples
- Molecular anthropology and the study of evolution
- Genome analysis and genome editing

In later chapters, we will look at how DNA technology has contributed to these areas.

Gene cloning enables isolation and identification of individual genes. The mainstay of genetic manipulation is the ability to isolate a single DNA sequence from the genome. This is the essence of gene cloning and can be considered as a series of four steps (Fig. 1.1). Successful completion of these steps provides the genetic engineer with a specific DNA sequence, which may then be used for a variety of purposes. A useful analogy is to consider gene cloning as a form of **molecular agriculture**, enabling the production of large amounts (in genetic engineering, this means nanograms or micrograms) of a particular DNA sequence. Although the basic cloning methodology has been extended (and in many cases replaced) by technologies such as the polymerase chain reaction, large-scale DNA sequencing and genome editing, this ability to isolate a particular gene sequence is

Fig. 1.1 The four steps in cloning a DNA sequence. Steps I and 2 are carried out in vitro and generate the recombinant DNA molecules. A host organism, such as a bacterium, is used for steps 3 and 4 (in vivo). The term clone refers to the colonies of identical host cells produced during amplification of the cloned fragments. The cloned sequence can then be isolated and processed further. Gene cloning is sometimes referred to as molecular cloning, to distinguish the process from the cloning of whole organisms.

still a major part of gene manipulation as carried out on a day-to-day basis in research laboratories worldwide.

One aspect of genetic engineering that has given cause for concern is the debate surrounding the potential applications of the technology. The term genethics is sometimes used to describe the ethical problems that exist in modern genetics, which are likely to increase in both number and complexity as genetic engineering technology becomes more sophisticated and implemented more widely. The use of transgenic plants and animals, investigation of the human genome, gene therapy, genome editing and many other topics are of concern not just to the scientist, but also to the population as a whole. Developments in genetically modified foods have provoked a welldocumented public backlash against the technology in many countries. Additional developments in the cloning of organisms, and in areas such as in vitro fertilisation and xenotransplantation, raise further questions. Although not strictly part of gene manipulation technology, organismal cloning will be considered later in this book, as this is an area of much concern and can be considered as genetic engineering in its broadest sense. Research on embryonic stem cells, and the potential therapeutic benefits that this may bring, is another area of concern that is part of the general advance of genetics. We will look at some of these ethical aspects in more detail in Chapter 3.

1.2 Laying the Foundations

Although the techniques used in gene manipulation began to appear in the 1970s, we should remember that development of these techniques depended on the knowledge and expertise provided by chemists, biochemists and microbial geneticists working in the earlier decades of the twentieth century. We can consider the development of genetics as falling into three main eras (Fig. 1.2). The science of genetics really began with the rediscovery of **Gregor Mendel**'s work at the start of the century, and the next 40 years or so saw the elucidation of the principles of inheritance and genetic mapping. Microbial genetics became established in the mid-1940s, and the role of DNA as the genetic material was confirmed. During this period, great advances were made in understanding the mechanisms of gene transfer between bacteria, and a broad knowledge base was established, from which later developments would emerge.

Determination of the structure of DNA by **James Watson** and **Francis Crick** in 1953 provided the stimulus for the development of genetics at the molecular level, and the next few years saw a period of intense activity and excitement as the main features of the gene and its expression were determined. This work culminated in the deciphering of the complete genetic code in 1966, and the stage was now set for the appearance of the new discoveries that would lead to the development of the early techniques in recombinant DNA technology.

As well as technical and scientific challenges, modern genetics poses many moral and ethical questions. 5

Gregor Mendel is often considered the 'father' of genetics.

Watson and Crick's double helix is perhaps the most 'famous' and most easily recognised molecule in the world. Fig. 1.2 The history of genetics since 1900. Three eras can be identified. Darker shaded areas represent the periods of major development in each branch of the subject, although advances continue to be made in all of these areas.

1.3 First Steps in DNA Cloning

In the late-1960s, there was a sense of frustration among scientists working in the field of molecular biology. Research had developed to the point where progress was being hampered by technical constraints, as the elegant experiments that had helped to decipher the genetic code could not be extended to investigate the gene in more detail. However, a number of developments provided the necessary stimulus for gene manipulation to become a reality. In 1967, the enzyme DNA ligase was isolated. This enzyme can join two strands of DNA together, a prerequisite for the construction of recombinant molecules, and can be regarded as a sort of molecular glue. This was followed by the isolation of the first type II restriction enzyme in 1970, a major milestone in the development of genetic engineering. Restriction enzymes are essentially molecular scissors that cut DNA at precisely defined sequences. Such enzymes can be used to produce fragments of DNA that are suitable for joining to other fragments. Thus, by 1970, the basic tools required for the construction of recombinant DNA were available.

The first recombinant DNA molecules were generated at Stanford University in 1972, utilising the cleavage properties of restriction enzymes (scissors) and the ability of DNA ligase to join DNA strands together (glue). The importance of these first tentative experiments cannot be overstated. Scientists could now join different DNA molecules together and could link the DNA of one organism to that of a completely different organism. The methodology was extended in

By the end of the 1960s, most of the essential requirements for the emergence of gene technology were in place.

7

1973 by joining DNA fragments to the **plasmid** pSC101, which is an **extrachromosomal element** derived from an antibiotic resistance plasmid originally isolated from the bacterium *Salmonella typhimurium*. These recombinant molecules behaved as **replicons**, *i.e.* they could replicate when introduced into *Escherichia coli* cells. Thus, by creating recombinant molecules *in vitro*, and placing the construct in a bacterial cell where it could replicate *in vivo*, specific fragments of DNA could be isolated from bacterial colonies that formed **clones** (colonies formed from a single cell, in which all cells are identical) when grown on agar plates. This development marked the emergence of the technology that became known as gene cloning (Fig. 1.3).

The discoveries of 1972 and 1973 triggered what is perhaps the biggest scientific revolution of all – the 'new genetics' era had arrived. The use of the new technology spread very quickly, and a sense of urgency and excitement prevailed. This was dampened somewhat by the realisation that the new technology could give rise to potentially harmful organisms with undesirable characteristics. It is to the credit of the biological community that measures were adopted to regulate the use of gene manipulation, and that progress in contentious areas was restricted until more information became available about the possible consequences of the inadvertent release of organisms containing recombinant DNA. However, the development of **genetically modified organisms (GMOs)**, particularly crop plants, has reopened the debate about the safety of these organisms and the consequences

The key to gene cloning is ensuring that the target sequence is replicated in a suitable host cell.

The development and use of GMOs pose some difficult ethical questions that may not arise in other areas such as gene cloning.

ISTUDY

of releasing GMOs into the environment. In addition, many of the potential medical benefits of gene manipulation, genetics and cell biology pose ethical questions that may not be easy to answer. We will come across some of these issues later in this book.

DNA technology continued (and continues) to expand at pace, with a number of key techniques developed in the late-1970s and early-1980s that would enable a step-change in scale to be achieved, with the ambitious project to sequence the human genome being completed in 2003. Further developments have changed DNA sequencing significantly, to the extent that we can now usefully describe DNA technology as itself falling into three eras (Fig. 1.4). As we explore the topics in this book, it may be useful to keep this diagram in mind as a 'roadmap' to help us place the technology in context.

1.4 Using the Web to Support Your Studies

Since the first edition of this book was published in 1994, the growth and development of DNA technology has been impressive, and often astonishing. In many ways, the parallel development of the **internet** and **World Wide Web (www)** is equally impressive, and the generation of students who may be using this book has grown up in a world that is completely immersed in the technology associated with 'the web'. Although information on how to access the internet is no longer needed, some of the guidance for using the web that was included in earlier editions remains appropriate.

The internet was conceived and developed by **Tim Berners-Lee** (now Sir Tim) in 1989 whilst working at CERN in Geneva. If you are not familiar with CERN and Berners-Lee, look these up now using your computer, laptop, tablet or smartphone! The term *internet* is used to

describe the network of computers that together provide the means to publish and share information, whilst the *World Wide Web* is a more general description of the information that is published using the internet. However, the two terms are often used interchangeably, and the phrases 'surfing the net', 'surfing the web' and 'look it up online' have become part of modern-day language. We will use 'the web' in this book when referring to the World Wide Web.

A really positive feature of the web is the range of material that can be found with a few clicks of a mouse or swipes with a finger. The fluidity and dynamic nature of the web mean that a printed book (like this one) cannot possibly compete; so we will not try to. A subtle shift in emphasis is therefore required – this book is a resource that can help steer you through the confusion of the web, as well as providing a structured look at the subject matter. I have therefore assumed that you will be reading this text with pretty much instant and continuous access to the internet, and that you will be able to use the web to help gather, collate and interpret additional information that you find.

Finding websites is generally straightforward if you know where you are going. Each website has an 'address' known as a **uniform resource locator (URL)**. A URL generally begins with http://www. followed by the specific **domain** address. This may end with a country identifier such as .uk, .ca, .cn, .us, .au, *etc*. The most common domain ending is .com (where the term 'dot com' comes from), which is used by around 50 per cent of all websites. Many student textbooks have associated websites, as do research groups, university departments, companies, *etc*.

If you don't know the URL, one of the many **search engines** enables you to look for information using a range of terms, and it is astonishing what you can find. However, caution is needed: there is an awful lot of information on the web, and there is a lot of awful information there as well! It is very easy to get sidetracked and end up wasting a lot of time searching through sites that are of no value (but may be interesting nonetheless). As I write this, I have just typed in the search terms that I used to illustrate this section in the third edition of this book. The number of 'hits' for each of the various terms, in 2007 and 2021, is shown in Table 1.1.

A number of points can be made when we consider the data. Firstly, the number of retrieved items is often far too large to be useful, and thus more specific, defined or restricted search terms will generally produce fewer results. However, even with something like 'sheep cloning' or 'plasmid vector', there is still too much information to look through, so learning to use the search and filter facilities provided by various search engines and websites is well worth the effort. Secondly, it seems that there has been an orders-of-magnitude increase in the number of hits generated by all of these terms. At first glance, this may not seem implausible, given the increase in research and development that will have occurred in these areas since 2007. However, we do need to be a little cautious about inferring too much, This book can be used as a guide to explore topics more broadly, and/or in more depth, using the web. 9